Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-pressure behavior of NaInSi2O6 and the influence of Me3+ on the compressibility of NaMe3+Si2O6 silicates

Identifieur interne : 001A81 ( Main/Repository ); précédent : 001A80; suivant : 001A82

High-pressure behavior of NaInSi2O6 and the influence of Me3+ on the compressibility of NaMe3+Si2O6 silicates

Auteurs : RBID : Pascal:12-0072167

Descripteurs français

English descriptors

Abstract

The equation of state of a single-crystal synthetic silicate NaInSi2O6 was determined from the unit cell parameters measured by X-ray diffraction using a diamond-anvil cell at 12 different pressures up to 7.83(1) GPa in order to provide a definitive model capable of predicting the high-pressure behavior of NaMe3+Si2O6 silicate compounds. The P-V data were fitted by a third-order Birch-Murnaghan equation of state obtaining the following coefficients: Vo = 463.42(3) Å3, KT0 = 109.0(6) GPa, K' = 3.3(2). Our results show similar results for NaMe3+Si2O6 compounds and confirm that for this mineral family, the empirical KT0 x V0 = constant relationship proposed in previous investigations is valid for isostructural compounds only if they share the same valence electron character. In addition, we collected intensity data on the same compound at 16 different pressures up to 9.467 GPa using a diamond-anvil cell with diamond backing plates. The main structural compression mechanism is played by the tetrahedral chain kinking, which is related to the shortening of Na-O3long distances. Comparing our equation of state and high-pressure crystal structural results with previous data on NaMe3+Si2O6 pyroxenes, we show that their compressibility increases much faster with the size of Me3+ cation when this one is a 3d transition metal.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0072167

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High-pressure behavior of NaInSi
<sub>2</sub>
O
<sub>6</sub>
and the influence of Me
<sup>3+</sup>
on the compressibility of NaMe
<sup>3+</sup>
Si
<sub>2</sub>
O
<sub>6</sub>
silicates</title>
<author>
<name sortKey="Periotto, B" uniqKey="Periotto B">B. Periotto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10</s1>
<s2>1350 Copenhagen</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<placeName>
<settlement type="city">Copenhague</settlement>
<region type="région" nuts="2">Hovedstaden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nestola, F" uniqKey="Nestola F">F. Nestola</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Dipartimento di Geoscienze, Università degli Studi di Padova, Via Giotto 1</s1>
<s2>35121 Padova</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>35121 Padova</wicri:noRegion>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Balic Zunic, T" uniqKey="Balic Zunic T">T. Balic-Zunic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Natural History Museum, University of Copenhagen, Øster Voldgade 5</s1>
<s2>1350 Copenhagen</s2>
<s3>DNK</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<placeName>
<settlement type="city">Copenhague</settlement>
<region type="région" nuts="2">Hovedstaden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pasqual, D" uniqKey="Pasqual D">D. Pasqual</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Dipartimento di Geoscienze, Università degli Studi di Padova, Via Giotto 1</s1>
<s2>35121 Padova</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>35121 Padova</wicri:noRegion>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alvaro, M" uniqKey="Alvaro M">M. Alvaro</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Dipartimento di Scienze della Terra, Università di Pavia, Via Ferrata 1</s1>
<s2>27100, Pavia</s2>
<s3>ITA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>27100, Pavia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Laboratory of Crystallography, Virginia Tech, 1981 Kraft Drive</s1>
<s2>Blacksburg</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Blacksburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohashi, H" uniqKey="Ohashi H">H. Ohashi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Hashi Institute for Silicate Sciences, Nishinakanobu 1-2-95</s1>
<s2>Shinagawa, 142-0054 Tokyo</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Shinagawa, 142-0054 Tokyo</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0072167</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0072167 INIST</idno>
<idno type="RBID">Pascal:12-0072167</idno>
<idno type="wicri:Area/Main/Corpus">002277</idno>
<idno type="wicri:Area/Main/Repository">001A81</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1098</idno>
<title level="j" type="abbreviated">Solid state commun.</title>
<title level="j" type="main">Solid state communications</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bond lengths</term>
<term>Bulk modulus</term>
<term>Crystal structure</term>
<term>Diamond anvil</term>
<term>Empirical method</term>
<term>Equations of state</term>
<term>High pressure</term>
<term>Indium Sodium Silicates Mixed</term>
<term>Lattice parameters</term>
<term>Monocrystals</term>
<term>Pressure effects</term>
<term>Pyroxene structure</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Haute pression</term>
<term>Méthode empirique</term>
<term>Equation état</term>
<term>Paramètre cristallin</term>
<term>Diffraction RX</term>
<term>Enclume diamant</term>
<term>Longueur liaison</term>
<term>Structure cristalline</term>
<term>Module compression</term>
<term>Indium Sodium Silicate Mixte</term>
<term>Structure pyroxène</term>
<term>Effet pression</term>
<term>Monocristal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The equation of state of a single-crystal synthetic silicate NaInSi
<sub>2</sub>
O
<sub>6</sub>
was determined from the unit cell parameters measured by X-ray diffraction using a diamond-anvil cell at 12 different pressures up to 7.83(1) GPa in order to provide a definitive model capable of predicting the high-pressure behavior of NaMe
<sup>3+</sup>
Si
<sub>2</sub>
O
<sub>6</sub>
silicate compounds. The P-V data were fitted by a third-order Birch-Murnaghan equation of state obtaining the following coefficients: V
<sub>o</sub>
= 463.42(3) Å
<sup>3</sup>
, K
<sub>T0</sub>
= 109.0(6) GPa, K' = 3.3(2). Our results show similar results for NaMe
<sup>3+</sup>
Si
<sub>2</sub>
O
<sub>6</sub>
compounds and confirm that for this mineral family, the empirical K
<sub>T0</sub>
x V
<sub>0</sub>
= constant relationship proposed in previous investigations is valid for isostructural compounds only if they share the same valence electron character. In addition, we collected intensity data on the same compound at 16 different pressures up to 9.467 GPa using a diamond-anvil cell with diamond backing plates. The main structural compression mechanism is played by the tetrahedral chain kinking, which is related to the shortening of Na-O3
<sub>long</sub>
distances. Comparing our equation of state and high-pressure crystal structural results with previous data on NaMe
<sup>3+</sup>
Si
<sub>2</sub>
O
<sub>6</sub>
pyroxenes, we show that their compressibility increases much faster with the size of Me
<sup>3+</sup>
cation when this one is a 3d transition metal.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1098</s0>
</fA01>
<fA02 i1="01">
<s0>SSCOA4</s0>
</fA02>
<fA03 i2="1">
<s0>Solid state commun.</s0>
</fA03>
<fA05>
<s2>152</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High-pressure behavior of NaInSi
<sub>2</sub>
O
<sub>6</sub>
and the influence of Me
<sup>3+</sup>
on the compressibility of NaMe
<sup>3+</sup>
Si
<sub>2</sub>
O
<sub>6</sub>
silicates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PERIOTTO (B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NESTOLA (F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BALIC-ZUNIC (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PASQUAL (D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ALVARO (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>OHASHI (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10</s1>
<s2>1350 Copenhagen</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Dipartimento di Geoscienze, Università degli Studi di Padova, Via Giotto 1</s1>
<s2>35121 Padova</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Natural History Museum, University of Copenhagen, Øster Voldgade 5</s1>
<s2>1350 Copenhagen</s2>
<s3>DNK</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Dipartimento di Scienze della Terra, Università di Pavia, Via Ferrata 1</s1>
<s2>27100, Pavia</s2>
<s3>ITA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Laboratory of Crystallography, Virginia Tech, 1981 Kraft Drive</s1>
<s2>Blacksburg</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Hashi Institute for Silicate Sciences, Nishinakanobu 1-2-95</s1>
<s2>Shinagawa, 142-0054 Tokyo</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>132-137</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10917</s2>
<s5>354000508644130200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>42 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0072167</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state communications</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The equation of state of a single-crystal synthetic silicate NaInSi
<sub>2</sub>
O
<sub>6</sub>
was determined from the unit cell parameters measured by X-ray diffraction using a diamond-anvil cell at 12 different pressures up to 7.83(1) GPa in order to provide a definitive model capable of predicting the high-pressure behavior of NaMe
<sup>3+</sup>
Si
<sub>2</sub>
O
<sub>6</sub>
silicate compounds. The P-V data were fitted by a third-order Birch-Murnaghan equation of state obtaining the following coefficients: V
<sub>o</sub>
= 463.42(3) Å
<sup>3</sup>
, K
<sub>T0</sub>
= 109.0(6) GPa, K' = 3.3(2). Our results show similar results for NaMe
<sup>3+</sup>
Si
<sub>2</sub>
O
<sub>6</sub>
compounds and confirm that for this mineral family, the empirical K
<sub>T0</sub>
x V
<sub>0</sub>
= constant relationship proposed in previous investigations is valid for isostructural compounds only if they share the same valence electron character. In addition, we collected intensity data on the same compound at 16 different pressures up to 9.467 GPa using a diamond-anvil cell with diamond backing plates. The main structural compression mechanism is played by the tetrahedral chain kinking, which is related to the shortening of Na-O3
<sub>long</sub>
distances. Comparing our equation of state and high-pressure crystal structural results with previous data on NaMe
<sup>3+</sup>
Si
<sub>2</sub>
O
<sub>6</sub>
pyroxenes, we show that their compressibility increases much faster with the size of Me
<sup>3+</sup>
cation when this one is a 3d transition metal.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A66F4</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Haute pression</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>High pressure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthode empirique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Empirical method</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Método empírico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Equation état</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Equations of state</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Lattice parameters</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>XRD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Enclume diamant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Diamond anvil</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Yunque diamante</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Longueur liaison</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Bond lengths</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Module compression</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Bulk modulus</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Módulo volumétrico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Indium Sodium Silicate Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium Sodium Silicates Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Structure pyroxène</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Pyroxene structure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Estructura piroxeno</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet pression</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Pressure effects</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>16</s5>
</fC03>
<fN21>
<s1>051</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001A81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0072167
   |texte=   High-pressure behavior of NaInSi2O6 and the influence of Me3+ on the compressibility of NaMe3+Si2O6 silicates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024